skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhou, Tianji"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The electron reflection probability r at symmetric twin boundaries Σ3, Σ5, Σ9, and Σ11 is predicted from first principles for the eight most conductive face-centered cubic (fcc) metals. r increases with decreasing interplanar distance of atomic planes parallel to the boundary. This provides the basis for an extrapolation scheme to estimate the reflection probability r r at random grain boundaries, which is relatively small, r r = 0.28–0.39, for Cu, Ag, and Au due to their nearly spherical Fermi surfaces, but approximately two times higher for Al, Ca, Ni, Rh, and Ir with a predicted r r = 0.61–0.72. The metal resistivity in the limit of small randomly oriented grains with fixed average size is expected to be proportional to the materials benchmark quantity ρ o λ × r r /(1 − r r ), where ρ o and λ are the bulk resistivity and bulk electron mean free path, respectively. Cu has the lowest value for this quantity, indicating that all other fcc metals have a higher resistivity in the limit of small randomly oriented grains. Thus, the conductivity benefit of replacement metals for narrow Cu interconnect lines can only be realized if the grains are larger than the linewidth or exhibit symmetric orientation relationships where r < r r . 
    more » « less
  2. null (Ed.)
  3. We present an ab initio evaluation of electron scattering mechanisms in Al interconnects from a back-end-of-line (BEOL) perspective. We consider the ballistic conductance as a function of nanowire size, as well as the impact of surface oxidation on electron transport. We also consider several representative twin grain boundaries and calculate the specific resistivity and reflection coefficients for each case. Lastly, we calculate the vertical resistance across the Al/Ta(N)/Al and Cu/Ta(N)/Cu interfaces, which are representative of typical vertical interconnect structures with diffusion barriers. Despite a high ballistic conductance, the calculated specific resistivities at grain boundaries are 70-100% higher in Al than in Cu, and the vertical resistance across Ta(N) diffusion barriers are 60-100% larger for Al than for Cu. These results suggest that in addition to the well-known electromigration limitations in Al interconnects, electron scattering represents a major problem in achieving low interconnect line resistance at fine dimensions. 
    more » « less